Mohr's Circle: Example Problem

\[22.1 \text{ ksi} = \sigma_y \]

\[9.3 \text{ ksi} = \sigma_x \]

\[4.8 \text{ ksi} = \tau_{xy} \]

Redraw in positive directions:

\[\sigma_y = -22.1 \text{ ksi} \]

\[\tau_{xy} = -4.8 \text{ ksi} \]

\[\sigma_x = 9.3 \text{ ksi} \]

1. Find Center of Circle

\[C = \sigma_{ave} = \frac{\sigma_x + \sigma_y}{2} = \frac{9.3 - 22.1}{2} = -6.4 \]

2. Plot Points:

\[(\sigma_{ave}, 0) = (-6.4, 0) \]

\[(\sigma_x, \tau_{xy}) = (9.3, -4.8) \]

\[(\sigma_y, -\tau_{xy}) = (-22.1, 4.8) \]

3. Draw Circle Around Center (over)

4. Find radius of circle (see figure)

\[R^2 = h^2 + b^2 = [9.3 - (-6.4)]^2 + [4.8]^2 \Rightarrow R = 16.42 \]

5. Use Table. To find answers to question like:

- Find maximum & minimum principal stresses, \(\theta_p \) (principal angle)
- Draw Principal Stress State
- Find maximum shear stress state
- Draw max shear stress state
- Rotate block \(\theta = 25^\circ \) to find new components
All units Ksi.

\[(\sigma_{p1}, \sigma_{p2}) = (-6.4, 16.4)\]

\[(\sigma_{x}, \sigma_{y}) = (9.3, -4.8)\]

\[\theta_{p} = 17^\circ\]

\[\theta_{p} = 8.5^\circ\]

Original Stress State

-22.1 Ksi

\[\sigma_{p1} = \sigma_{max} + R = -6.4 + 16.42\]

\[\sigma_{p1} = 10.02\text{ Ksi}\]

\[\sigma_{p2} = \sigma_{min} - R = -6.4 - 16.42\]

\[\sigma_{p2} = -22.82\text{ Ksi}\]

Principal Stress State

Notice that \((\sigma_{x}, \sigma_{y})\) was rotated to \((\sigma_{p1}, 0)\).
(c) Max shear stress in at top & bottom of circle
 rotate \(\theta_s = 90° \) from principal stress state \(\sigma_x \) on circle.

-22.8 ksi

Notice that \((\sigma_p, 0) \) was rotated to \((\sigma_{xy}, \theta_p) \).

(e) \(25° \) on block \(\Rightarrow 50° \) on circle

New location of \(\sigma_x' \):

\[
\begin{align*}
\sigma_x' &= \sigma_{xy} + l = -6.4 + 13.8 = 7.35 \text{ ksi} \\
\tau_x'y' &= h = 8.9 \text{ ksi}
\end{align*}
\]
Also \(\sigma_y' = \sigma_{xx} - P = -6.4 - 13.8 = -20.2 \text{ ksi} \)

\[\sigma_y = 22.1 \text{ ksi} \]

\[T_{xy} = -4.8 \text{ ksi} \]

\(\sigma_x = 9.3 \text{ ksi} \)

\(T_{xy}' = 8.9 \text{ ksi} \)

\(\sigma_x' = 7.35 \text{ ksi} \)

\[25^\circ \]

Notice that \((\sigma_x, T_{xy})\) rotated to \((\sigma_x', T_{xy}')\) of Part (c)

The old \(\sigma_x \) component rotates to the new \(\sigma_x' \) component.

The old \(\sigma_y \) component rotates to the new \(\sigma_y' \) component.

The shear stress direction (sign) is determined by where the new pt. \((\sigma_x', T_{xy}')\) end up:

\(T_{xy}' \) is positive below the \(\sigma \) axis,

\(T_{xy}' \) is negative above the \(\sigma \) axis

when looking at \((\sigma_x', T_{xy}')\)